

ISSUES RELATED TO LIMITED TISSUE PROCUREMENT FOR CANCER DIAGNOSIS IN THE ERA OF MINIMALLY INVASIVE SURGERY AND ADVANCED SURGICAL PATHOLOGY**ISSUES RELATED TO LIMITED TISSUE PROCUREMENT FOR CANCER DIAGNOSIS IN THE ERA OF MINIMALLY INVASIVE SURGERY AND ADVANCED SURGICAL PATHOLOGY**

B. Midhinesh, B. Madhu Ranga Swamy, Sri Venkateswara Institute of Medical Sciences, Tirupathi.

ABSTRACT:

Recent progress in diagnostic imaging, surgical techniques, and molecular pathology has transformed cancer diagnosis and management. Minimally invasive surgical approaches, once largely reserved for benign conditions, are now widely applied for oncologic tissue procurement. However, the reduced volume of tissue obtained through such procedures often presents significant diagnostic challenges. Although advances in ancillary testing including immunohistochemistry, molecular diagnostics, and genomic sequencing have enhanced diagnostic sensitivity, these techniques remain dependent on the adequacy and quality of the sampled tissue. This review examines the evolving role of minimally invasive surgery in cancer diagnostics, highlights limitations associated with restricted tissue sampling, and emphasizes the critical importance of tissue adequacy assessment. A coordinated multidisciplinary approach involving radiologists, surgeons, pathologists, and molecular laboratories

is essential to ensure diagnostic accuracy and optimal patient outcomes

Keywords: Cancer diagnosis; Tissue adequacy; Minimally invasive surgery; Surgical pathology; Molecular pathology; Oncologic biopsy

INTRODUCTION:

The landscape of cancer diagnosis has undergone substantial transformation due to advancements in diagnostic imaging, surgical technology, and pathology. High-resolution imaging modalities now allow precise localization of even small or deep-seated lesions, facilitating targeted tissue sampling through minimally invasive procedures. Concurrently, developments in diagnostic pathology particularly in molecular genetics, genomics, and digital pathology have improved the precision and accuracy of tumor classification.

Despite these advances, accurate cancer diagnosis continues to depend fundamentally on the availability of adequate and representative tissue samples. While minimally invasive techniques reduce patient morbidity and recovery time, they often yield limited tissue, which may be insufficient for comprehensive histopathological and molecular evaluation. This review explores the challenges associated with limited tissue procurement in cancer diagnostics within the context of evolving surgical and pathological practices.

ISSUES RELATED TO LIMITED TISSUE PROCUREMENT FOR CANCER DIAGNOSIS IN THE ERA OF MINIMALLY INVASIVE SURGERY AND ADVANCED SURGICAL PATHOLOGY

Developments in Minimally Invasive Oncologic Surgery

Minimally invasive surgical techniques, including laparoscopy and robotic-assisted surgery, have become integral to modern surgical practice. These approaches offer clear benefits such as reduced postoperative pain, shorter hospital stays, and quicker recovery. Their application in oncologic surgery has expanded significantly with improvements in imaging guidance and surgical instrumentation.

However, the effectiveness of minimally invasive procedures in cancer diagnosis is influenced by several factors, including operator expertise, multidisciplinary coordination, and pre-procedural planning. Inadequate sampling due to technical limitations or anatomical constraints can compromise diagnostic accuracy, particularly when small core biopsies or aspirates are relied upon for definitive diagnosis.

Advances in Diagnostic Pathology

Unlike routine surgical specimens such as appendectomy or cholecystectomy samples, oncologic tissue procurement requires careful consideration of tissue adequacy for diagnosis, grading, and staging. Small biopsies and cytologic specimens obtained through minimally invasive approaches must often support extensive ancillary testing.

The integration of advanced diagnostic techniques such as flow cytometry, cytogenetics, FISH, PCR-based assays, and NGS has revolutionized oncopathology. These methods enable detailed tumor characterization and molecular subtyping, which are essential for personalized cancer therapy. Nevertheless, their reliability remains contingent upon sufficient viable tumor tissue. Emerging liquid biopsy techniques, including circulating tumor DNA analysis, offer promise but currently do not replace the need for tissue-based diagnosis in most solid tumors.

Challenges Associated with Limited Tissue Samples

Obtaining diagnostically adequate tumor tissue requires close collaboration among radiologists, surgeons, and pathologists. Challenges include accurate lesion targeting, sampling of viable tumor regions, and real-time assessment of specimen adequacy. When possible, intraoperative consultations such as frozen sections or rapid cytologic evaluation can help ensure sufficient tissue is collected during the initial procedure.

Inadequate tissue sampling may lead to nondiagnostic or misleading results, delayed diagnosis, repeat procedures, and increased healthcare costs. Although ancillary and molecular techniques are highly sensitive, they cannot fully compensate for poor tissue quality or insufficient tumor cellularity.

ISSUES RELATED TO LIMITED TISSUE PROCUREMENT FOR CANCER DIAGNOSIS IN THE ERA OF MINIMALLY INVASIVE SURGERY AND ADVANCED SURGICAL PATHOLOGY

Tissue Adequacy in Cancer Diagnosis

Assessment of tissue adequacy is a critical yet inconsistently applied component of oncologic diagnostics. Certain cytologic specimens, such as cervical cytology and thyroid FNA, have well-defined adequacy criteria. In contrast, many biopsy procedures lack standardized adequacy benchmarks, increasing the risk of diagnostic error.

For example, bone marrow evaluation requires both adequate aspirate material and a sufficiently long core biopsy. International guidelines recommend a minimum core length to allow accurate morphologic assessment. Resource constraints and staffing shortages have reduced the frequency of bedside adequacy assessment in many institutions, further emphasizing the need for systematic quality monitoring.

One effective quality assurance strategy is the use of continuous internal audits or “dashboard” models to track specimen adequacy over time. Such approaches provide feedback to operators and help identify systemic issues affecting tissue quality.

Multidisciplinary Communication and Quality Assurance

Effective communication among members of the multidisciplinary cancer care team is essential for ensuring tissue adequacy and diagnostic accuracy. Pathologists must convey limitations related to

specimen quality, particularly when negative or inconclusive results may reflect sampling issues rather than true absence of disease.

Multidisciplinary tumor boards provide an ideal forum for discussing tissue adequacy, unexpected findings, and the need for repeat or targeted biopsies. Transparent discussion of diagnostic uncertainty allows for informed clinical decision-making and improves patient outcomes. The principle that “tumor is a rumor until tissue proves the issue” underscores the central role of adequate pathology in cancer care.

AIM AND OBJECTIVES

Aim

To critically evaluate the challenges associated with limited tissue procurement for cancer diagnosis in the era of minimally invasive surgery and to emphasize the importance of tissue adequacy assessment and multidisciplinary collaboration in modern surgical pathology.

Objectives

- To examine the impact of minimally invasive surgical techniques on the quality and quantity of tissue obtained for cancer diagnosis.
- To analyze the role of advanced pathological and molecular diagnostic methods in compensating for limited tissue samples.

ISSUES RELATED TO LIMITED TISSUE PROCUREMENT FOR CANCER DIAGNOSIS IN THE ERA OF MINIMALLY INVASIVE SURGERY AND ADVANCED SURGICAL PATHOLOGY

- To identify limitations and risks associated with inadequate tissue procurement despite technological advancements.
- To highlight the importance of standardized tissue adequacy assessment in oncologic pathology.
- To emphasize the role of multidisciplinary communication in improving diagnostic accuracy and patient outcomes

LITERATURE REVIEW

Advances in imaging and surgical techniques have significantly altered tissue procurement strategies in cancer diagnosis. High-resolution imaging modalities enable precise lesion targeting, allowing surgeons to obtain tissue samples using minimally invasive approaches such as laparoscopic, robotic, and image-guided needle biopsies. These techniques have reduced patient morbidity and improved procedural efficiency.

Simultaneously, the field of diagnostic pathology has evolved with the integration of immunohistochemistry, flow cytometry, cytogenetics, and molecular diagnostics. Techniques such as PCR, FISH, and next-generation sequencing have enhanced the sensitivity and specificity of cancer diagnosis and tumor sub-classification. Several studies demonstrate that molecular testing can successfully be performed on small biopsy and

cytology specimens; however, these outcomes are highly dependent on tissue adequacy and tumor cellularity.

Previous literature has also highlighted the lack of standardized adequacy criteria across many biopsy procedures. While certain cytologic samples, such as cervical cytology and thyroid FNAs, follow well-established adequacy guidelines, similar standards are inconsistently applied to other biopsy types. Multiple reports emphasize that inadequate tissue sampling remains a leading cause of diagnostic delay, false-negative results, and repeat procedures.

Recent studies further underscore the importance of multidisciplinary collaboration among radiologists, surgeons, pathologists, and molecular laboratories. Tumor boards and real-time communication have been shown to improve diagnostic yield and optimize tissue utilization, particularly in complex oncologic cases.

MATERIAL AND METHODS:

Study Design

This article is a narrative review based on published literature, professional guidelines, and institutional diagnostic pathology practices related to tissue procurement and adequacy in cancer diagnosis.

Data Sources

Relevant peer-reviewed articles were identified from indexed biomedical databases including

ISSUES RELATED TO LIMITED TISSUE PROCUREMENT FOR CANCER DIAGNOSIS IN THE ERA OF MINIMALLY INVASIVE SURGERY AND ADVANCED SURGICAL PATHOLOGY

PubMed and Google Scholar. Published guidelines from recognized pathology and oncology organizations were also reviewed. Emphasis was placed on literature addressing minimally invasive surgery, biopsy techniques, tissue adequacy criteria, and molecular diagnostic applications.

Selection Criteria

Studies and reviews were included if they addressed:

- Minimally invasive surgical procedures for cancer diagnosis
- Tissue adequacy assessment in histopathology and cytopathology
- Molecular and ancillary diagnostic techniques dependent on tissue quality
- Multidisciplinary approaches to oncologic diagnosis

Non-English articles, non-peer-reviewed sources, and studies unrelated to diagnostic tissue procurement were excluded.

Data Analysis

Information from selected studies was analyzed qualitatively to identify common themes related to tissue limitations, diagnostic challenges, and quality improvement strategies. Illustrative examples from clinical pathology practice were used to contextualize real-world implications.

RESULTS

The analysis of published literature and institutional diagnostic pathology practices revealed several consistent findings related to tissue procurement and adequacy in cancer diagnosis.

Impact of Minimally Invasive Procedures on Tissue Yield

Minimally invasive surgical and image-guided biopsy techniques were found to significantly reduce patient morbidity and procedural complications. However, these approaches frequently resulted in limited tissue volume, particularly in core needle biopsies and fine needle aspiration samples. Multiple studies reported that small or fragmented specimens often restricted complete histopathological evaluation and reduced the ability to perform comprehensive ancillary and molecular testing.

Tissue Adequacy and Diagnostic Accuracy

Adequate tissue procurement was directly associated with higher diagnostic accuracy. Specimens that met defined adequacy criteria allowed reliable tumor classification, grading, and staging. In contrast, inadequate samples were commonly associated with indeterminate diagnoses, false-negative results, and the need for repeat biopsies. The review identified tissue inadequacy as a recurring contributor to diagnostic delay across multiple cancer types.

ISSUES RELATED TO LIMITED TISSUE PROCUREMENT FOR CANCER DIAGNOSIS IN THE ERA OF MINIMALLY INVASIVE SURGERY AND ADVANCED SURGICAL PATHOLOGY

Role of Ancillary and Molecular Testing

Ancillary diagnostic techniques such as immunohistochemistry, flow cytometry, PCR, FISH, and next-generation sequencing demonstrated high analytical sensitivity when sufficient viable tumor tissue was available. However, results consistently showed that molecular testing could not compensate for poor specimen quality or low tumor cellularity. Samples with necrosis, crush artifact, or insufficient DNA/RNA integrity frequently yielded inconclusive or unreliable molecular results.

Variability in Adequacy Assessment Practices

The findings highlighted considerable variability in tissue adequacy assessment practices across institutions. While certain procedures, such as thyroid FNAs and bone marrow biopsies, followed standardized adequacy guidelines, many solid tumor biopsies lacked uniform assessment criteria. Institutions that incorporated real-time adequacy evaluation and internal quality monitoring systems demonstrated improved specimen quality and reduced repeat procedure rates.

Importance of Multidisciplinary Communication

Enhanced communication among radiologists, surgeons, pathologists, and molecular laboratories was associated with improved diagnostic outcomes. Multidisciplinary tumor board

discussions facilitated recognition of sampling limitations and enabled targeted re-biopsy strategies when necessary. Clear documentation and communication of tissue limitations in pathology reports reduced misinterpretation of negative or inconclusive findings.

DISCUSSION

The increasing reliance on minimally invasive surgical techniques for cancer diagnosis presents a paradox: while these approaches reduce procedural risk and patient discomfort, they often result in limited tissue availability for comprehensive diagnostic evaluation. Despite remarkable advances in molecular and genomic pathology, these technologies cannot fully overcome the consequences of inadequate tissue procurement.

Adequate tissue remains essential not only for establishing a definitive diagnosis but also for tumor grading, staging, and molecular profiling, which are critical for personalized cancer therapy. Insufficient or poorly preserved samples may lead to inconclusive results, false-negative interpretations, and delays in treatment initiation. This review emphasizes that tissue adequacy assessment should be regarded as a fundamental component of oncologic diagnostics rather than an optional step. Incorporating real-time adequacy evaluation, quality monitoring systems, and feedback mechanisms can significantly improve diagnostic outcomes. Moreover, limitations

ISSUES RELATED TO LIMITED TISSUE PROCUREMENT FOR CANCER DIAGNOSIS IN THE ERA OF MINIMALLY INVASIVE SURGERY AND ADVANCED SURGICAL PATHOLOGY

related to specimen quality must be clearly communicated in pathology reports to guide appropriate clinical decision-making.

Multidisciplinary communication plays a pivotal role in addressing tissue adequacy challenges. Tumor board discussions allow for shared interpretation of findings, identification of sampling limitations, and planning of targeted repeat biopsies when necessary. Such collaborative approaches enhance diagnostic confidence and ultimately improve patient care. In conclusion, while technological innovations continue to advance cancer diagnostics, the principle remains unchanged: high-quality tissue is indispensable. Strengthening tissue procurement practices, standardizing adequacy assessment, and fostering multidisciplinary collaboration are essential to fully realize the benefits of modern oncologic pathology.

CONCLUSION

The rapid evolution of imaging, surgical techniques, and diagnostic pathology has greatly enhanced the precision of cancer diagnosis. However, these advances also highlight the persistent and critical importance of adequate tissue procurement. Minimally invasive surgical approaches must be balanced with the need for sufficient diagnostic material. Systematic assessment of tissue adequacy, combined with open communication across multidisciplinary teams, is essential to ensure accurate diagnosis and effective patient management. Ultimately,

high-quality tissue remains the cornerstone of reliable oncologic pathology, regardless of technological progress.

REFERENCE:

1. Ishizawa T, Saiura A. Fluorescence imaging for minimally invasive cancer surgery. *Surg Oncol Clin N Am.* 2019;28(1):45–60.
2. Nacchio M, Palladino R, Vigliar E, et al. Molecular quality metrics in thyroid cytopathology. *Cancer Cytopathol.* 2023;131(12):772–780.
3. Ahmed MS, Klippel-Almaraz D, Amin SE, et al. Whole-slide imaging in thyroid FNA evaluation. *Cancer Cytopathol.* 2025;133(9):e70046.
4. Melstrom KA, Kaiser AM. Minimally invasive surgery for rectal cancer. *World J Gastroenterol.* 2020;26(30):4394–4414.
5. Melamed A, Eisenhauer EL. Minimally invasive cytoreductive surgery in ovarian cancer. *J Surg Oncol.* 2024;129(1):126–127.
6. Smith MA, Pantanowitz L, Dacic S, et al. Adequacy of biopsy specimens for molecular testing in lung cancer. *Am J Clin Pathol.* 2015;143(2):193–200.
7. Da Cunha Santos G, Saieg MA. Preanalytic variables in cytologic molecular testing. *Cancer Cytopathol.* 2015;123(11):633–643.
8. Roy-Chowdhuri S, Stewart J. Preanalytic variables in NGS-based cytology. *Arch Pathol Lab Med.* 2016;140(11):1191–1199.

**ISSUES RELATED TO LIMITED TISSUE PROCUREMENT FOR CANCER DIAGNOSIS
IN THE ERA OF MINIMALLY INVASIVE SURGERY AND ADVANCED SURGICAL
PATHOLOGY**

9. Stoy SP, Segal JP, Mueller J, et al. NGS feasibility in EBUS-guided cytology. *Clin Lung Cancer*. 2018;19(3):230–238.
10. Grosu HB. EBUS-TBNA in lymphoma diagnosis. *J Bronchology Interv Pulmonol*. 2018;25(3):165–166.
11. Clementsen PF, Konge L. Endoscopic ultrasound-guided lung biopsies. *J Bronchology Interv Pulmonol*. 2018;25(1):e3–e4.
12. Roy S, Roy S. Dr. Paul Farmer: A global health leader. *J Med Biogr*. 2025;33(1):13–15.

Source of Support: Nil. **Conflicts of Interest:** None